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GROWING BOUNDARY LAYER

The boundary layer on a flat plate is illustrated in Figure I. The

streamwise, normal, and spanwise directions are denoted by x, y, and z, re-

spectively. The displacement thickness 5" increases in the streamwise

direction. At any distance x0 from the leading edge, one can define a
Reynolds number Re based on the velocity u and kinematic viscosity

in the free stream and the local displacement thickness,

The transition process of the growing boundary layer is influenced by

significant non-linear, three-dimensional and non-parallel effects.

Unfortunately, existing computer resources are only adequate for treating two
out of these three effects.
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PARALLELBOUNDARYLAYER

A commoncompromise is to study the parallel boundary layer (see Figure
2) instead of the true, growing one. Here the focus is on the vicinity of
somepoint x0 (see Figure i) and the approximation .is that the displacement
thickness remains constant (in x) at the value _x_" As a consequence,
only the non-linear and the three-dimensional effects are taken into
account. The neglect of the non-parallel effects should be serious only if
there is appreciable growth on the scale (XTS) of the Tollmien-Schlichting
(TS) waves. Since the mean flow in the parallel boundary layer is uniform
in x, a Fourier approximation in x is highly accurate; moreover, only one
spatial wavelength needs to be resolved for the temporal transition problem.
Thus, highly resolved computations can be performed, well into the strongly
non-linear regime.
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BOUNDARY-LAYERCONTROLS

Figure 3 depicts three types of lamlnar-flow control (LFC) techniques.
The dimensionless parameters describing self-similar solution of the Falkner-
Skan boundary-layer equations are defined in the figure. These are 8 for
pressure gradient, Fw for suction, and _ for heating. In the last case,
the free stream and wall temperatures, denoted by T and Tw,
respectively, (and given in degrees Kelvin), differ and= the kinematic
viscosity depends upon the temperature T.
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CONTROLLED,PARALLELBOUNDARYLAYER

The essential features of the controlled, parallel water boundary layer
are summarizedin Figure 4. The meanflow is taken to be the solution of the
appropriate self-similar boundary-layer equations. The temperature dependence
of the viscosity and conductivity are taken from Ref. i. (However, the
specific heat and density are presumedto be independent of temperature; their
values in the free stream are used throughout the flow field.) The parallel
flow assumption permits the use of a periodic approximation in x and z.
Shown below is the form of a single Fourier component. This alone is

appropriate for the linearized stability problem, but for the full non-linear

simulations reported in this paper a finite Fourier series is employed in
both x and z.

• Parallel flow assumption

U(X, Y, Z, T)=U(Y) ei (oX + 13Z -wT)

• Mean flow described by Falkner-Skan equation with pressure gradient,
suction and/or heating controls

• Viscosity and conductivity based on empirical formulas for water

• Reynolds numbers based on displacement thickness and free
stream conditions

Figure 4
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LINEAR THEORY RESULTS FOR HEATED BOUNDARY LAYERS

The linear stability of heated water boundary layers has been examined by

Wazzan, Okamura, and Smith [2] and by Lowell and Reshotko [I]. Wazzan et al.

included the effects of temperature only insofar as they modified the mean

flow; their stability analysis admitted only velocity and pressure

fluctuations. The linear results of Lowell and Reshotko, on the other hand,

included the effects of temperature fluctuations. Figure 5, taken from Ref.

I, compares the neutral stability curves that ensue under heating control

for T = 60°F when the temperature is allowed to fluctuate (solid lines)

and whe_n it is held fixed at its mean value (dashed lines). Note that the

boundary layer is actually more stable than is suggested by linear theory

calculations which neglect temperature fluctuations. Note also that although

the flow initially becomes more stable as the wall is heated, its stability

eventually degrades with additional wall heating. Lowell and Reshotko have

performed further calculations in which the effects of the temperature upon

the density are included. They found that this effect moves the neutral

stability curves to the left, e.g., for the T w = 90°F case, the solid curve

moves one-third of the distance to the dashed curve when density fluctuations

are admitted.
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INCOMPRESSIBLE HEATED BOUNDARY LAYER

This paper examines LFC techniques in the non-llnear regime via direct

numerical solution of the time-dependent, incompressible Navler-Stokes equa-

tions, with temperature dependent viscosity and conductivity. These equations
(Figure 6) are augmented with an equation for the time evolution of the tem-

perature. In order to conform to the parallel flow assumption, forcing terms

need to be added to the momentum and temperature equations. These are denoted

by Fu and F6 respectively. See Zang and Hussalnl [3, 4] for more details.
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Figure 6
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NUMERICALMETHODS

In this work, numerical methods are needed for three problems. The mean
flow is calculated from the Falkner-Skan boundary-layer equations via a
fourth-order finite-difference scheme [5]. The linear elgenmodes (and linear
stability properties) are computed by a Chebyshev Tau method [6]. The time
dependent Navier-Stokes equations are solved by a Fourier-Chebyshev colloca-
tion method [7]. The meanflow and the linear eigenfunctions are used for the
initial conditions of the direct simulation (Figure 7).

i

i
ill i
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• Non-linear mean flow

4th-order compact

• Linear modes

finite difference scheme

Chebyshev Tau method

• Navier-Stokes solution

• Fourier-Chebyshev collocation in space
• 3rd-order Adams-BashfOrth on explicit terms
• Crank-Nicholson on implicit terms

(vertical diffusion, pressure and continuity)

Figure 7



SPLITTINGMETHOD

The Navier-Stokes algorithm used a splitting method which is outlined in
Figure 8. The first (velocity) step accounts for the advection and diffusion
terms. (Although not indicated below, the temperature equation is also

integrated in this step.) The second (pressure) step enforces the incompress-

ibility constraint. The boundary conditions in the velocity step are chosen

to minimize the slip velocity which is present after the pressure step. More

details are given by Zang and Hussaini [7]. The book by Canuto, Hussaini,

Quarteroni, and Zang [8] contains an exhaustive discussion of spectral methods

for simulations of incompressible flow.

The results reported in this paper were obtained on the NAS Cray 2. The

collocation grids ranged from 16 x 48 to 64 x 64 (in x and y) for the 2-

D cases and from 16 x 48 x 8 to 64 x 64 x 16 (in x, y, and z) for the 3-

D problems. Typical simulations took several thousand time-steps and covered

from two to five periods of the primary 2-D TS wave.

Velocity step (tn _ t*)

ut =__*x __*+ v. (t,v_u*)

_*(_, t.)= u(_,tn)

_*lbndy = g*

Pressure step (t* ---* tn+l)

u_* = - V P**

V. _u_u**:0

,_**(__,tn+l) = __(_,t*)

_u** • _ = g •

Final result u_(x, tn+l) = u__**(x__,tn+l)

Figure 8
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MEANFLOWAT Re= 8950

The specific cases chosen for this investigation of non-linear stability
are illustrated in Figure 9. The Reynolds numberwas 8950 and was chosen in
part because somelinear theory results were reported for this Reynolds number
in Ref. I. The free-stream temperature was 293 K. The amounts of pressure
gradient, suction, and heating were chosen so that the flow was neutrally
stable. (The linear theory results for the heated case did not include the
temperature fluctuations.) The mean flow of both the controlled and
uncontrolled cases are given in the figure. In the heated case, the viscosity
varies by 50% and the conductivity by 7%. The specific heat and density
(whose variations are not accounted for in the non-linear simulation) vary by
0.1% and I%, respectively.
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MEAN FLOW CHARACTERISTICS FOR Re = 8950

The use of the LFC techniques has a dramatic effect upon the actual dis-

placement thickness of the boundary layer. This is quantified in Figure I0.

The Reynolds number based on the displacement thickness of the corresponding

uncontrolled boundary is also listed there. Note that in terms of the growing

boundary layer, the controlled cases correspond to different positions x 0,
with the pressure gradient case having the greatest distance from the leading

edge and the uncontrolled case having the least distance.

CONTROL c_. / vl_Xo

NONE
1-724q

Re_BLAS I us

8,950

,_ = 0.55

r = 1-10

O. 94_8

1-3986

16,330

11, OqO

Figure 10
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BOUNDARY-LAYER MODES FOR Re = 8950

The accuracy of the fully non-llnear, time-dependent Navier-Stokes code

is documented in Figure II. For each of the linear modes specified in the

first four columns, a highly accurate temporal eigenvalue _ and eigenfunc-

tion were generated using the Chebyshev Tau code. This eigenfunction was then

input at very low amplitude into the non-linear code as the Inital condi-

tion. The code was run for two TS periods and the growth rate of the eigen-
function was measured. This is listed in the last column. Listed next to it

is the growth rate (imaginary part of m) produced by the linear stability

code. This growth rate is effectively zero--the real part of _ is

roughly 0.04. Keeping in mind the size of the real part of m, it is clear

from Figure 11 that the non-linear code is accurate to four or five digits.

Linear Computed
Control Mode a 13 growth rate growth rate

Pressure TS 2-D O.168 O.000 O.000095 O.000096

TS 3-D O.168 O.168 -0. 001012 -0. 001028

Suction TS 2-D O.162 O.000 O.000093 O.000093

IS 3-D O.162 O.162 -0. 000968 -0. 000993

Heating TS 2-D O.1.50 O.000 O.000093 O.000097

IS 3-D O.150 O.150 -0. 000798 -0. 000793
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INITIAL CONDITIONS

The initial conditions for the direct numerical simulations are depicted
in Figure 12. The initial velocity field consists of the appropriate mean
flow plus a 2-D TS wave and (possibly) a symmetric pair of oblique 3-D waves
(only one of which is shown). The arrow denotes the streamwise direction and
the indices kx and kz label the streamwise and spanwise Fourier components
relative to the wavenumhers _ and B of the 3-D TS waves given in Figure
11. The initial amplitude of the waves is measuredby their maximumstream-
wise velocity relative to the free-stream mean flow velocity.

Mean flow

5 (kx, kz )

4

¥ +
2

1

0 .5 1.0 1.5

2-D TS wave 3-D TS wave

= (1,0) (kx,kz) = (1,-1)

U

Figure 12
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GROWTH OF FINITE AMPLITUDE 2-D WAVES

The first set of results pertains to finite amplitude effects upon 2-D TS

waves. Results of simulations for which the initial amplitude of the 3-D wave

was zero and the initial amplitude of the 2-D was i/2, I, 2, and 4% are

summarized in Figure 13. Suction control yields behavior similar to that for

pressure gradient control [4] and is therefore not given. Two types of

heating control simulations were performed: in one case the temperature was

held fixed at its initial mean value (corresponding to the linear theory study

of Wazzan et al. [2]), and in the other the temperature fluctuations were

properly accounted for (as in the work of Lowell and Reshotko [I]). The

initial conditions for both types of heating simulations, however, were

identical.

The strength of the perturbation at any instant is measured here by the

kinetic energy E of the (kx,k z) = (1,0) Fourier component of the velocity

field. This is plotted on a semi-log scale in Figure 13, with the time

measured in units of the period of the 2-D TS wave; the energy at t = 0 is

denoted by E0. Thus, one indication of the impact of non-linear effects is
the departure of the curves from a straight (and nearly horizontal) line.

Another is the failure of the curves to lie on top of each other.
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NON-LINEAR EFFECTS ON 2-D WAVES

In all cases, the initial growth of the 2-D TS wave is faster than

exponential. Note that in the non-linear regime the heated boundary layer

appears to be less stable, i.e., subjected to faster growth of the 2-D wave,

when temperature fluctuations are included. This is precisely the opposite of

how temperature fluctuations affect the linear stability results. It is also

apparent that non-linear effects lead to a more rapid destabillzation of a

water boundary layer controlled by heat than one controlled by pressure

gradient.

The tables below (Figure 14) summarize the departure from linear growth

for 2-D waves with initial amplitudes of 1/2% and 2%. The numbers give the

ratios (after I, 2, and 3 TS periods) of the actual amplitude of the 2-D wave

to that given by linear theory. These numbers, of course, Just reinforce the

data presented in Figure 13.

NON-LINEAR/LINEAR AMPLITUDE RATIO FOR l/2X 2-D WAVES

TIME PRESSUREGRADIENT HEATING (FIXED T) HEATING

1 1.004 1.005 1.001

2 1.013 1.017 1.016

3 1.022 1-030 1.080

NON-LINEAR/LINEAR AMPLITUDE RATIO FOR 2% 2-D WAVES

TIME PRESSUREGRADIENT HEATING (FIXED T) HEATING

1 1.050 1.065 1.184

2 1.189 1.257 1.605

3 1. 378 1- 567 2.387

Figure 14
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FUNDAMENTAL VERSUS SUBHARMONIC SECONDARY INSTABILITIES

The transition to turbulence is a strongly three-dimensional process.

The next part of this investigation focuses on finite amplitude effects upon

the secondary instability of the primary 2-D wave to small, 3-D perturba-

tions. The secondary instabilities may be categorized as fundamental or

subharmonic. These are identified in flow visualization of the early three-

dimensional stage of transition as ordered or staggered arrays of lambda

vortices [9], and have been explained by weakly nonlinear theory [I0]. Figure

15 sketches the periodic array of vortices associated with these secondary

instabilities. The distance Lx is the length of the primary 2-D TS wave and

it is given by 2_/a.

The 3-D waves that lead to the fundamental instability are TS waves,

i.e., solutions to the Orr-Sommerfeld equation, whereas the subharmonic

instability arises from the interaction of the 2-D wave with a solution of the

vertical vorticity (or Squire) equation with streamwise wavenumber a/2.

These so-called Squire modes are all linearly stable.

Ordered (K-type)

Staggered(C-type, H-type) i

2 Lx

Figure 15 |

i
g_-

i
i
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SECONDARY INSTABILITY FOR PRESSURE GRADIENT CONTROL

Figures 16, 17, and 18 summarize the results of numerical simulations of

the secondary instability of controlled boundary layers. In all cases, the

initial 3-D amplitude was 0.01% and the initial 2-D amplitude varied between

I/2% and 4%. In these plots, the kinetic energy is shown for the 2-D Fourier

component (kx,k Z) = (i,0) and for the appropriate 3-D component--(l,l) for

the fundamental Instability and (I/2,1) for the subharmonic. The 3-D curves

are labeled by the amplitude of the 2-D wave for the simulation.

SECONDARY INSTABILITY at Re = 8950

Fundamental Subharmonic
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SECONDARYINSTABILITYFORHEATINGCONTROL(FIXEDT)

The secondary instabilities have the same general character here that
they do in uncontrolled boundary layers: they are triggered by 2-D amplitudes
on the order of I% or more; their growth rate increases with the 2-D
amplitude; they grow much faster than theprimary wave; and the fundamental
and subharmonic instabilities have comparable growth rates (Figure 17).
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SECONDARYINSTABILITYFORHEATINGCONTROL

Amongthese three cases, the secondary instabLlity is strongest for the
heated boundary-layer simulation which includes temperature fluctuations. But

the more rapid growth of the 3-D waves in this case is clearly tied to the

more rapid growth of the 2-D wave. Hence, the principal effect of the

temperature fluctuations is upon the 2-D waves (Figure 18).

SECONDARY INSTABILITY at Re = 8950
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FLOW FIELD STRUCTURE

Figures 19 to 23, taken from the work of Zang and Hussalnl [4], Illus-

trate the flow field which develops for a fundamental (K-type) secondary

instability in a heated boundary layer. The calculations were performed at

a Reynolds number of ii00 and for wall heating of 2.75%. The initial ampli-

tude was 2.7% for the 2-D wave and 0.8% for the 3-D wave. This simulation was

run for nearly five periods of the 2-D TS wave; a grid of 96 x 162 x 216 (in

x, y, and z) was employed in the later stages. Figures 20 - 23 display the

key features at a very advanced stage of the transition process. The flat

plate is indicated by the solid surface and the mean flow is from the lower

right to the Upper left.

The vortex lines indicate the presence of a hairpin vortex. The spanwise

vortlclty displays the strong detached shear layer which form§ oh top of the

vortex. The normal velocity contours indicate the regions in which low speed

fluid from the wall region is injected upward towards the free stream. The

plane in the middle of the spanwise direction is known as the peak plane, it

is located at the center of the hairpin vortex. In this plane, the detached

shear layer is stronges£ and the upward normal velocity is most intense. Of

special interest here are £he contours of the temperature perturbation. They

represent the local departure from the mean temperature. Note that the

temperature _[uctuatlons are strongly correlated with the normal velocity.

There Is a temperature increase in the peak plane and an even stronger

temperature decrease near the wall on the outer regions of the legs of the

hairpin vortex. The llne drawings in figure 19 are from a slightly earlier

stage and are marked with specific contour levels.
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CONCLUSIONS

ORIGI_NAL-_PAGE - IS

OE __R QUALIT_

The principal conclusions from this work are summarized below. For all

of the LFC techniques examined here, flnlte-amplitude effects are

destabilizing, i.e., finite-amplitude 2-D TS waves grow faster than predicted

by linear theory. We also find, in direct contrast to the results from linear

theory for low-amplitude waves, that temperature fluctuations exert a further

de-stabilizing influence on finite amplitude 2-I) TS waves. The controlled

boundary layers are, of course, subject to intense 3-D secondary

instabilities. The instantaneous growth rates of both the fundamental and

subharmonic instabilities are strongly tied to the amplitude of the primary

2-D wave. The principal finite-amplitude effects upon the 3-D secondary

instabilities occur through the faster growth of the 2-D wave.
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CONCLUSIONS

D Finite amplitude effects

growth of 2-D waves

lead to enhanced

Temperature effects are further destabilizing

for finite amplitude 2-D waves

More rapid growth of the primary wave leads

to more rapid development of 3-D secondary
instabilities

The fundamental and subharmonic instabilities

have comparable growth rates

Figure 24
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